If the unit vectors a and b are inclined at an angle 2θ such that $|\vec a-\vec b|<1$ and $0 ≤θ≤π$, then lies in the interval |
$[0, π/6)∪(5π/6, π]$ $[0, π]$ $[π/6, π/2]$ $[π/2,5π/6]$ |
$[0, π/6)∪(5π/6, π]$ |
We have, $|\vec a-\vec b|^2=|\vec a|^2+|\vec b|^2-2(\vec a.\vec b)$ $⇒|\vec a-\vec b|^2=|\vec a|^2+|\vec b|^2-2|\vec a||\vec b|\cos 2θ$ $⇒|\vec a-\vec b|^2=2-2\cos 2θ$ $[∵|\vec a|=|\vec b|=1]$ $⇒|\vec a-\vec b|^2=4\sin^2θ$ $⇒|\vec a-\vec b|=2|\sin θ|$ Now, $|\vec a-\vec b|<1$ $⇒2|\sin θ|<1⇒|\sin θ|<\frac{1}{2}⇒θ∈[0, π/6)∪(5π/6, π]$ |