Which of the following are correct? (A) If $\text{a ≡ b(mod n)}$, then $\text{-a ≡ -b (mod n)}$ Choose the correct answer from the options given below: |
(A), (B) and (D) only (A), (B) and (C) only (A), (C) and (D) only (B), (C) and (D) only |
(A), (C) and (D) only |
The correct answer is Option (3) → (A), (C) and (D) only (A) True. If $a\equiv b\pmod{n}$ then $n\mid(a-b)$, so $n\mid-(a-b)=(b-a)$ and $-a\equiv -b\pmod{n}$. (B) False. If $a+b=c$ then $(a+b+c)=2c$, and $a\pmod{n}+b\pmod{n}$ need not be congruent to $2c\pmod{n}$ in general. (C) True. If $a\equiv b\pmod{n}$ then $n\mid(a-b)$, so $n\mid k(a-b)$ and $ka\equiv kb\pmod{n}$ for all integers $k$. (D) True. If $a\equiv b\pmod{n}$ then $n\mid(a-b)$, hence $n\mid\big((a+k)-(b+k)\big)$ and $(a+k)\equiv(b+k)\pmod{n}$ for all integers $k$. |