The integrating factor of the differential equation $(x \log x) \frac{d y}{d x}+y=2 \log x$ is given by |
$\log (\log x)$ $e^x$ $\log x$ $x$ |
$\log x$ |
We have, $\frac{d y}{d x}+\frac{1}{x \log x} y=\frac{2}{x}$ ∴ Integrating factor = $e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x$ |