Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

Let $f:\left[\frac{1}{2}, 1\right] \in R$ (the set of all real numbers) be a positive, non-constant and differentiable function such that $f'(x)<2 f(x)$ and $f\left(\frac{1}{2}\right)=1$. Then the value of $\int\limits_{1 / 2}^1 f(x) d x$ lies in the interval

Options:

$(2 e-1,2 e)$

$(e-1,2 e-1)$

$\left(\frac{e-1}{2}, e-1\right)$

$\left(0, \frac{e-1}{2}\right)$

Correct Answer:

$\left(0, \frac{e-1}{2}\right)$

Explanation:

We have,

$f'(x)-2 f(x)<0$

$\Rightarrow f'(x) e^{-2 x}-2 e^{-2 x} f(x)<0 e^{-2 x}$

$\Rightarrow \frac{d}{d x}\left(f(x) e^{-2 x}\right)<0$

$\Rightarrow f(x) e^{-2 x}$ is decreasing on $[1 / 2,1]$

$\Rightarrow f(x) e^{-2 x}<f\left(\frac{1}{2}\right)$ for all $x \in[1 / 2,1]$

$\Rightarrow f(x) e^{-2 x}<\frac{1}{e}$ for all $x \in[1 / 2,1]$

$\Rightarrow f(x)<e^{2 x-1}$ for all $x \in[1 / 2,1]$

Thus, we have,

$0<f(x)<e^{2 x-1}$ for all $x \in[1 / 2,1]$

$\Rightarrow 0<\int\limits_{1 / 2}^1 f(x) d x<\int\limits_{1 / 2}^1 e^{2 x-1}$

$\Rightarrow 0<\int\limits_{1 / 2}^1 f(x) d x<\left[\frac{1}{2} e^{2 x-1}\right]_{1 / 2}^1$

$\Rightarrow 0<\int\limits_{1 / 2}^1 f(x) d x<\frac{e-1}{2}$

$\Rightarrow \int\limits_{1 / 2}^1 f(x) d x \in\left(0, \frac{e-1}{2}\right)$