If a + b - c = 0, then what is the value of $\frac{(b-c)^2}{4bc}+\frac{(c-a)^2}{4ca}-\frac{(a+b)^2}{4ab}$ ? |
$\frac{1}{2}$ $-\frac{3}{4}$ $-\frac{1}{2}$ $\frac{3}{4}$ |
$-\frac{3}{4}$ |
If a + b - c = 0, then what is the value of $\frac{(b-c)^2}{4bc}+\frac{(c-a)^2}{4ca}-\frac{(a+b)^2}{4ab}$ = If a + b = c Put the value of a = 1, b = 1 and c = 2 ( These value will satisfy the given equation ) $\frac{(2-1)^2}{4(1)(2)}+\frac{(2-1)^2}{4(2)(1)}-\frac{(1+1)^2}{4(1)(1)}$ = \(\frac{1}{8}\) + \(\frac{1}{8}\) - 1 = \(\frac{1}{4}\) - 1 = $-\frac{3}{4}$ |