A circle is inscribed in ΔABC, touching AB, BC and AC at the points P, Q and R respectively. If AB - BC = 4 cm, AB - AC = 2 cm, and the perimeter of ΔABC= 32 cm, then AC (in cm) = ? |
$\frac{35}{3}$ $\frac{38}{3}$ $\frac{32}{3}$ $\frac{26}{3}$ |
$\frac{32}{3}$ |
AB - BC = 4 ..(1) AB - AC = 2 ..(2) Perimeter of ABC = 32 AB + BC + CA = 32 ..(3) Adding equations (1), (2) and (3) 32 = 3AB - 6 3AB = 32 + 6 3AB = 38 AB = \(\frac{38}{3}\) Now, ⇒ AC = AB - 2 ⇒ AC = [\(\frac{38}{3}\) - 2] ⇒ AC = \(\frac{32}{3}\) cm Therefore, AC is \(\frac{32}{3}\) cm. |