The integrating factor of differential equation \(x\frac{dy}{dx}\)+2y=x2 log x is |
\(\frac{1}{x}\) x \(\frac{1}{x^2}\) x2 |
x2 |
$x.\frac{dy}{dx}+2y=x^2logx$ $\frac{dy}{dx}+\frac{2}{x}×y=xlogx⇒\frac{dy}{dx}+\frac{2y}{x}=xlogx$ $P=\frac{2}{x}$ $I.F.=e^{\int\frac{2}{x}dx}=e^{2logx}=x^2$ Option 4 is correct. |