A biconvex lens has radii of curvature of 10 cm each. If the refractive index of the material of the lens is 1.5, what will be its focal length in air? |
5 cm 10 cm 20 cm ∞ |
10 cm |
The correct answer is Option (2) → 10 cm Using lens maker’s formula: $\frac{1}{f} = (n - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ Here, $n = 1.5$, $R_1 = +10 \text{ cm}$, $R_2 = -10 \text{ cm}$ $\frac{1}{f} = (1.5 - 1)\left(\frac{1}{10} - \frac{-1}{10}\right)$ $\frac{1}{f} = 0.5\left(\frac{1}{10} + \frac{1}{10}\right)$ $\frac{1}{f} = 0.5 \times \frac{2}{10} = 0.1$ $f = 10 \ \text{cm}$ Focal length = 10 cm |