If the random variable X follows the Poisson distribution such that $P[X = k] = P[X = k+1]$, then the mean value of X is: |
$k$ $k-1$ $k^2$ $k+1$ |
$k+1$ |
The correct answer is Option (4) → $k+1$ Given: $X \sim \text{Poisson}(\lambda)$ and $P[X = k] = P[X = k+1]$ Poisson pmf: $P[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}$ Given equality: $\frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-\lambda} \lambda^{k+1}}{(k+1)!}$ Cancel $e^{-\lambda}$: $\frac{\lambda^k}{k!} = \frac{\lambda^{k+1}}{(k+1)!}$ Simplify: $\frac{\lambda^k}{k!} = \frac{\lambda \lambda^k}{(k+1)k!} \Rightarrow 1 = \frac{\lambda}{k+1} \Rightarrow \lambda = k+1$ Mean of Poisson = $\lambda = k+1$ |