If $|\vec a| = 1,|\vec b|= 2, |2\vec a +\vec b| = 2\sqrt{3}$ then $|\vec a-\vec b|$ is: |
$\sqrt{3}$ $\sqrt{5}$ $\frac{2}{\sqrt{3}}$ $\frac{2}{\sqrt{5}}$ |
$\sqrt{3}$ |
The correct answer is Option (1) → $\sqrt{3}$ Given: $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|2\vec{a} + \vec{b}| = 2\sqrt{3}$ Find $|\vec{a} - \vec{b}|$. Use the formula for magnitude squared: $|2\vec{a} + \vec{b}|^2 = (2\vec{a} + \vec{b}) \cdot (2\vec{a} + \vec{b}) = 4|\vec{a}|^2 + 4 \vec{a} \cdot \vec{b} + |\vec{b}|^2$ Given $|2\vec{a} + \vec{b}| = 2\sqrt{3}$, so: $(2\sqrt{3})^2 = 4 \times 1^2 + 4 \vec{a} \cdot \vec{b} + 2^2$ $4 \times 3 = 4 + 4 \vec{a} \cdot \vec{b} + 4$ $12 = 8 + 4 \vec{a} \cdot \vec{b}$ $4 \vec{a} \cdot \vec{b} = 12 - 8 = 4$ $\vec{a} \cdot \vec{b} = 1$ Now find $|\vec{a} - \vec{b}|^2$: $|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2$ $= 1 - 2 \times 1 + 4 = 1 - 2 + 4 = 3$ Therefore: $|\vec{a} - \vec{b}| = \sqrt{3}$ |