The value of $\int\limits_0^{\pi / 2} \log \tan x d x$, is |
$\frac{\pi}{4}$ $\frac{\pi}{2}$ 0 none of these |
0 |
Let $I=\int\limits_0^{\pi / 2} \log \tan x d x$ ....(i) Then, $I =\int\limits_0^{\pi / 2} \log \tan \left(\frac{\pi}{2}-x\right) d x$ [Using $\int\limits_0^a f(x)dx = \int\limits_0^a f(a-x)dx$] $\Rightarrow I =\int\limits_0^{\pi / 2} \log \cot x d x$ ....(ii) Adding (i) and (ii), we get $2 I=\int\limits_0^{\pi / 2}(\log \tan x+\log \cot x) d x$ $\Rightarrow 2 I=\int\limits_0^{\pi / 2} \log 1 d x=\int\limits_0^{\pi / 2} 0 d x=0 \Rightarrow I=0$ |