$f(x)=\sin x+\frac{1}{2} \cos 2 x$ in $\left[0, \frac{\pi}{2}\right]$ (A) $f'(x)=\cos x-\sin 2 x$ Choose the correct answer from the options given below: |
(A), (B) and (D) only (A), (B) and (C) only (A), (B), (C) and (D) (B), (C) and (D) only |
(A), (B) and (D) only |
The correct answer is Option (1) → (A), (B) and (D) only $f(x)=\sin x+\frac{\cos 2 x}{2}$ $f'(x)=\cos x-\sin 2x=0$ $\cos x=2\sin x\cos x$ $\cos x=0,\sin x=\frac{1}{2}$ $x=\frac{π}{6},\frac{π}{2}$ critical points $f(0)=\frac{1}{2}$ → minimum $f(\frac{π}{6})=\frac{3}{4}$ → maximum $f(\frac{π}{2})=\frac{1}{2}$ only A, B, D → correct |