Let A be a non singular matrix of order n × n, Then |adj (3A)| is equal to: |
$3|A|^{n-1}$ $3^{n(n-1)}|A|^{n-1}$ $3^n|A|^{n-1}$ $3^n|A|^n$ |
$3^{n(n-1)}|A|^{n-1}$ |
The correct answer is Option (2) → $3^{n(n-1)}|A|^{n-1}$ Given: A is a non-singular matrix of order n × n Property: $|adj(B)| = |B|^(n-1)$ for a square matrix B of order n Here,$ B = 3A ⇒ |adj(3A)| = |3A|^(n-1)$ Also, $|3A| = 3^n |A|$ Therefore, $|adj(3A)| = (3^n |A|)^(n-1) = 3^{n(n-1)} |A|^{n-1}$ |