If the matrix $A=\begin{bmatrix} 3 & 7 & a\\b & 1 & 5\\-2 & c & 11\end{bmatrix}$ is a symmetric matrix, then the values of a, b and c are : |
$a=11, b=7, c=1 $ $a=11,b=1, c=7$ $a=-2, b=7,c=5$ $a=-2, b=1,c=7$ |
$a=-2, b=7,c=5$ |
The correct answer is Option (3) → $a=-2, b=7,c=5$ $A^T=A$ [Symmetric] $\begin{bmatrix} 3 & b & -2\\7 & 1 & c\\a & 5 & 11\end{bmatrix}=\begin{bmatrix} 3 & 7 & a\\b & 1 & 5\\-2 & c & 11\end{bmatrix}$ $b=7,a=-2,c=5$ |