The general solution of the differential equation $(1 + e^x)dy + ye^x dx = 0$, where $y > 0$, is |
$y = C(1+e^x)$, C is an arbitary constant $\frac{c}{e^x}=\frac{y}{1+e^x}$, C is an arbitary constant $C=y(1+e^x)$, C is an arbitary constant $y = \frac{ce^x}{1+e^x}$, C is an arbitary constant |
$C=y(1+e^x)$, C is an arbitary constant |
The correct answer is Option (3) → $C=y(1+e^x)$, C is an arbitary constant $ (1 + e^x) \, dy + y e^x \, dx = 0 $ $ \Rightarrow \frac{dy}{dx} = -\frac{y e^x}{1 + e^x} $ $ \Rightarrow \frac{dy}{y} = -\frac{e^x}{1 + e^x} \, dx $ $ \Rightarrow \int \frac{1}{y} \, dy = -\int \frac{e^x}{1 + e^x} \, dx $ $ \Rightarrow \ln y = -\ln(1 + e^x) + C $ $ \Rightarrow \ln y = \ln \left( \frac{1}{1 + e^x} \right) + C $ $ \Rightarrow y = A \cdot \frac{1}{1 + e^x} = \frac{A}{1 + e^x} $ General solution: $ y = \frac{A}{1 + e^x} $, where $A > 0$ |