If $\sum\limits^{2n}_{r=1}sin^{-1}x_r = n\, \, \pi, $ then $\sum\limits^{2n}_{r=1} x_r $ is equal to |
n 2n $\frac{n(n+1)}{2}$ none of these |
2n |
We have , $-\frac{\pi}{2} ≤ sin^{-1} x_i ≤ \frac{\pi}{2}$ for i = 1, 2...., 2n $∴ \sum\limits^{2n}_{r=1}sin^{-1}x_r = n\, \, \pi, $ $ ⇒ sin^{-1} x_r =\frac{\pi}{2}; r = 1, 2, ...., 2n$ $⇒ x_r = 1; r = 1, 2, ..., 2n$ $⇒ \sum\limits^{2n}_{r=1} x_r = \sum\limits^{2n}_{r=1} 1 = 2n $ |