Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

Match List-I with List-II:

List-I

List-II

(A) The derivative of $\log_ex$ with respect to $\left(\frac{1}{x}\right)$ at $x=5$ is

(I) -5

(B) If $x^3+x^2y+xy^2=21x$, then $\frac{dy}{dx}$ at (1, 1) is

(II) -6

(C) If $f(x)=x^3\log_e\frac{1}{x}$, then $f'(1)+f''(1)$ is

(III) 5

(D) If $y=f(x^2)$ and $f'(x)=e^{\sqrt{x}}$, then $\frac{dy}{dx}$ at $x=0$ is

(IV) 0

Choose the correct answer from the options given below:

Options:

(A)-(I), (B)-(II), (C)-(III), (D)-(IV)

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

(A)-(I), (B)-(II), (C)-(IV), (D)-(III)

(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Correct Answer:

(A)-(I), (B)-(III), (C)-(II), (D)-(IV)

Explanation:

The correct answer is Option (2) → (A)-(I), (B)-(III), (C)-(II), (D)-(IV)

List-I

List-II

(A) The derivative of $\log_ex$ with respect to $\left(\frac{1}{x}\right)$ at $x=5$ is

(I) -5

(B) If $x^3+x^2y+xy^2=21x$, then $\frac{dy}{dx}$ at (1, 1) is

(III) 5

(C) If $f(x)=x^3\log_e\frac{1}{x}$, then $f'(1)+f''(1)$ is

(II) -6

(D) If $y=f(x^2)$ and $f'(x)=e^{\sqrt{x}}$, then $\frac{dy}{dx}$ at $x=0$ is

(IV) 0