The domain of the function $f(x)=\frac{x^2+1}{x^2-3 x+2}$ is |
$R-\{-1,1\}$ $R$ $R-\{1,2\}$ $R-\{3,-2\}$ |
$R-\{1,2\}$ |
The correct answer is Option (3) → $R-\{1,2\}$ $f(x)=\frac{x^2+1}{x^2-3 x+2}$ $x^2-3 x+2⇒x^2-2x-x+2$ $⇒x(x-2)-1(x-2)$ $⇒(x-1)(x-2)$ $⇒f(x)=\frac{x^2+1}{(x-1)(x-2)}$ so $x≠1,2$ so domain = $R-\{1,2\}$ |