A random variable X has the following probability distribution:
Then: (A) $k=\frac{1}{6}$ (B) $P(X<2)=\frac{1}{2}$ (C) $E(X)=\frac{3}{4}$ (D) $P(1<X<2)=\frac{5}{6}$ Choose the correct answer from the options given below: |
(A) and (B) only (A), (B) and (C) only (A), (B), (C) and (D) (B), (C) and (D) only |
(A) and (B) only |
The correct answer is Option (1) → (A) and (B) only Since sum of all probabilities must be 1. $k+2k+3k+0=1$ $⇒6k=1$ $⇒k=\frac{1}{6}$ → (A) $P(X<2)=P(X=0)+P(X=1)$ $=\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$ → (B) |