Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Calculus

Question:

If $x\sqrt{1+y}+y\sqrt{1+x}=0, $ then $\frac{dy}{dx}=$

Options:

$\frac{1}{(1+x)^2}$

$\frac{-1}{(1+x)^2}$

$(1+x)^2$

$-(1+x)^2$

Correct Answer:

$\frac{-1}{(1+x)^2}$

Explanation:

The correct answer is Option (2) → $\frac{-1}{(1+x)^2}$

$x\sqrt{1+y}+y\sqrt{1+x}=0$

$\sqrt{1+y}+x\frac{1}{2\sqrt{1+y}}\frac{dy}{dx}+\sqrt{1+x}\frac{dy}{dx}+y\frac{1}{2\sqrt{1+x}}=0$

$\frac{dy}{dx}\left(\frac{x}{2\sqrt{1+y}}+\sqrt{1+x}\right)=-\left(\frac{y}{2\sqrt{1+x}+\sqrt{1+y}}\right)$

$⇒\frac{dy}{dx}=\frac{-1}{(1+x)^2}$