If $y=x^3log\, x $, then $\frac{d^2y}{dx^2}$ is equal to : |
$x^2(3+4\, log x )$ $x(4 + 3\, log x)$ $2x^2 log x $ $x(5+6\, log x)$ |
$x(5+6\, log x)$ |
The correct answer is Option (4) → $x(5+6\, log x)$ $y=x^3\log x$ $\frac{d}{dx}(uv)=u'v+uv'$ where $u=x^3$ & $v=\log x$ $\frac{du}{dx}=3x^2$ $\frac{dv}{dx}=\frac{1}{x}$ $\frac{dy}{dx}=x^3.\frac{1}{x}+3x^2.\log x$ $=x^2+3x^2\log x$ $=x^2(1+3\log x)$ Now, differentiate $\frac{dy}{dx}=x^2(1+3\log x)$ using product rule $u=x^2$ & $v=(1+3\log x)$ Differentiate $u=x^2$ $\frac{du}{dx}=2x$ Differentiate $v=(1+3\log x)$ $\frac{dv}{dx}=\frac{3}{x}$ $\frac{d^2y}{dx^2}=2x(1+3\log x)+x^2.\frac{3}{x}$ $=2x+6x\log x+3x$ $=5x+6x\log x$ $=x(5+6\log x)$ |