If $\int \frac{1}{a^2 \sin ^2 x+b^2 \cos ^2 x} d x=\frac{1}{12} \tan ^{-1}(3 \tan x)+C$, then the maximum value of $a \sin x+b \cos x$, is |
$\sqrt{41}$ $\sqrt{40}$ $\sqrt{39}$ $\sqrt{38}$ |
$\sqrt{40}$ |
We have, $I=\int \frac{1}{a^2 \sin ^2 x+b^2 \cos ^2 x} d x$ $\Rightarrow I =\int \frac{\sec ^2 x}{b^2+a^2 \tan ^2 x} d x$ $\Rightarrow I =\frac{1}{a} \int \frac{1}{b^2+(a \tan x)^2} d(a \tan x)$ $=\frac{1}{a b} \tan ^{-1}\left(\frac{a}{b} \tan x\right)+C$ ∴ $a b=12$ and $\frac{a}{b}=3 \Rightarrow a^2=36 \Rightarrow a= \pm 6$ ∴ $a b=12 \Rightarrow b= \pm 2$ Thus, we have $a \sin x+b \cos x= \pm(6 \sin x+2 \cos x)$ We know that $-\sqrt{a^2+b^2} \leq a \sin x+b \cos x \leq \sqrt{a^2+b^2}$ for all $x$ ∴ $-\sqrt{40} \leq \pm 6 \sin x \pm 2 \cos x \leq \sqrt{40}$ for all $x$. |