Two concentric spheres of radii R and r have similar charges with equal surface density (σ). The electric potential at their common centre is |
$\sigma / \varepsilon_0$ $\frac{\sigma}{\varepsilon_0}(R-r)$ $\frac{\sigma}{\varepsilon_0}(R+r)$ none of the above |
$\frac{\sigma}{\varepsilon_0}(R+r)$ |
Let q1 and q2 be charges on spheres. Then potential at the common centre $v=\frac{k q_1}{R}+\frac{k q_2}{r}=\frac{1}{e_0}\left[\frac{1}{4 \pi R^2} \times R+\frac{q_2}{4 \pi r^2} \times r\right]$ But $\frac{q_1}{4 \pi R^2}=\frac{q_2}{4 \pi r^2}=\sigma \quad ∴ \quad v=\frac{1}{\varepsilon_0}[\sigma R+\sigma r]=\frac{\sigma}{\varepsilon_0}[R+r]$ |