A cell of constant emf is first connected to a resistance $R_1$ and then to $R_2$. If power delivered in both cases are same, then the internal resistance of the cell is: |
$\sqrt{R_1\,R_2}$ $\sqrt{R_1/R_2}$ $\frac{R_1+R_2}{2}$ $\frac{R_1-R_2}{2}$ |
$\sqrt{R_1\,R_2}$ |
The correct answer is Option (1) → $\sqrt{R_1\,R_2}$ Let 'r' be the internal resistance of the cell, $I=\frac{E}{R+r}$ [Using Ohm's law] and, $P=I^2R$ $⇒P_1\left(\frac{E}{R_1+r}\right)^2R,P_2\left(\frac{E}{R_2+r}\right)^2R$ $\left(\frac{E}{R_1+r}\right)^2R_1=\left(\frac{E}{R_2+r}\right)^2R_2$ $R_1({R_1}^2+r^2+2R_2r)=R_2({R_1}^2r^2+r^2+2R_1r)$ $R_1R_2(R_2-R_1)=(R_2-R_1)r^2$ $⇒r=\sqrt{R_1R_2}$ |