The maximum value of $\frac{logx}{x}$ for x in [2, ∞) is : |
e 0 1 $\frac{1}{e}$ |
$\frac{1}{e}$ |
The correct answer is Option (4) → $\frac{1}{e}$ $y=\frac{\log x}{x}$ so $\frac{dy}{dx}=\frac{1}{x^2}-\frac{\log x}{x^2}=0$ $⇒x=e$ $\frac{d^2y}{dx^2}=\frac{-2}{x^3}+\frac{2\log x}{x^3}-\frac{1}{x^3}$ $\frac{d^2y}{dx^2}=\frac{2}{e^3}-\frac{3}{e^3}<0$ so $x=e$ (maxima point) $\left.\right]_{x=e}=\frac{1}{e}$ (max value) |