If $N + \frac{1}{N} = \sqrt{3}$, then find the value of $N^6 +\frac{1}{N^6}+11$. |
-11 9 -2 11 |
9 |
If $N + \frac{1}{N} = \sqrt{3}$ Then find the value of $N^6 +\frac{1}{N^6}+11$ ? We know a direct result = If $N + \frac{1}{N} = \sqrt{3}$ Then N6 = -1 ( Always) $N^6 +\frac{1}{N^6}+11$ = -1 -1 + 11 = 9 |