If 3sec2θ + tanθ = 7, (0° < θ < 90°), then find the value of \(\frac{cosec2θ\;+\;cosθ}{sin2θ\;+\;cotθ}\) |
\(\frac{2+\sqrt {3}}{2}\) \(\frac{2+3\sqrt {2}}{4}\) \(\frac{2+\sqrt {2}}{4}\) 1 |
\(\frac{2+\sqrt {2}}{4}\) |
Put θ = 45° 3(\(\sqrt {2}\))2 + 1 = 7 (satisfied) ⇒ \(\frac{cosec90°\;+\;cos45°}{sin90°\;+\;cot45°}\) = \(\frac{1+\frac{1}{\sqrt {2}}}{1+1}\) = \(\frac{\sqrt {2}+1}{2\sqrt {2}}\) = \(\frac{\sqrt {2}+1}{\sqrt {2}}\)×\(\frac{\sqrt {2}}{\sqrt {2}}\) = \(\frac{2+\sqrt {2}}{4}\) |