If $A=\begin{bmatrix} 2x+y & -3\\4 & 2\end{bmatrix} $ and $B=\begin{bmatrix} 5 & 3x-2y \\2 & 1\end{bmatrix}$ are such that $A+B=\begin{bmatrix} 0 & 0\\6 & 3\end{bmatrix}$ then values of x and y are respectively : |
1, 3 3, 1 -3, -1 -1, -3 |
-1, -3 |
The correct answer is Option (4) → -1, -3 $A+B=\begin{bmatrix} 2x+y+5 & 3x-2y-3\\6 & 3\end{bmatrix}=\begin{bmatrix}0&0\\6&3\end{bmatrix}$ so $2x+y=-5$ ...(1) $3x-2y=3$ ...(2) 2 × eq. 1 + eq. 2 $4x+2y+3x-2y=-10+3$ $7x=-7⇒x=-1$ from (1) $-2+y=-5$ $⇒y=-3$ |