The point on the curve $y=8x-x^2$, where the tangent is parallel to the line $8x-4y -1=0$ is : |
(3, 15) (2, 4) (15, 3) (6, 8) |
(3, 15) |
The correct answer is Option (1) → (3, 15) Rearrange the given equation into the slope-intercept form, $8x-4y-1=0$ $[y=mx+c]$ $⇒y=2x-\frac{1}{4}$ $⇒m=2$ $y=8x-x^2$ [Given] $\frac{dy}{dx}=8-2x$ $⇒8-2x=2$ $⇒2x=6$ $⇒x=3$ $⇒y=8(3)-(3)^2=15$ $⇒(3,15)$ |