If $\frac{K}{k^2-2k+1}=\frac{1}{6}$, then what is the value of $\frac{1}{k^3}+k^3$ ? |
472 492 512 48 |
492 |
If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n If $\frac{K}{k^2-2k+1}=\frac{1}{6}$ Then, $\frac{1}{k^3}+k^3$ = ? $k^2$-2k+1 = 6k = $k^2$-8k+1 = 0 Divide the equation by k on both sides, k + \(\frac{1}{k}\) = 8 $x^3 +\frac{1}{x^3}$ = 83 - 3 × 8 $x^3 +\frac{1}{x^3}$ = 512 - 24 = 492 |