The area enclosed between the curves $y^2=x$ and y = |x| is: |
1 sq. unit $\frac{2}{9}$ sq. units $\frac{1}{6}$ sq. units $\frac{2}{3}$ sq. units |
$\frac{1}{6}$ sq. units |
The correct answer is Option (3) → $\frac{1}{6}$ sq. units $y^2=x$, $y = |x|$ $y = |x|⇒y^2=x^2$ $y^2=x⇒x^2=x$ $x=0,1$ point of intersection so area = $\int\limits_0^1\sqrt{x}-xdx$ $=\left[\frac{2}{3}x\sqrt{x}-\frac{x^2}{2}\right]_0^1$ $=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$ sq. units |