Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

Let $g(x)=\log f(x)$, where $f(x)$ is twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=x f(x)$. Then, for $N=1,2,3, ....g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=$

Options:

$-4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2 N-1)^2}\right\}$

$4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2 N-1)^2}\right\}$

$-4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2 N+1)^2}\right\}$

$4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2 N+1)^2}\right\}$

Correct Answer:

$-4\left\{1+\frac{1}{9}+\frac{1}{25}+...+\frac{1}{(2 N-1)^2}\right\}$

Explanation:

We have,

$g(x)=\log f(x)$ and $f(x+1)=x f(x)$

$\Rightarrow g(x+1)=\log f(x+1)$

$\Rightarrow g(x+1)=\log (x f(x))$              $[∵ f(x+1)=x f(x)]$

$\Rightarrow g(x+1)=\log x+\log f(x)$

$\Rightarrow g(x+1)-g(x)=\log x$

$\Rightarrow g^{\prime \prime}(x+1)-g^{\prime \prime}(x)=-\frac{1}{x^2}$

Putting $x=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, ..., \frac{2 N-1}{2}$, we get

$g^{\prime \prime}\left(1+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=-4$

$g^{\prime \prime}\left(2+\frac{1}{2}\right)-g^{\prime \prime}\left(1+\frac{1}{2}\right)=-\frac{4}{9}$

$g^{\prime \prime}\left(3+\frac{1}{2}\right)-g^{\prime \prime}\left(2+\frac{1}{2}\right)=-\frac{4}{25}$
           .                       .                       .
           .                       .                       .
           .                       .                       . 

$g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(N-\frac{1}{2}\right)=-\frac{4}{(2 N-1)^2}$

Adding all these, we get

$g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=-4\left(1+\frac{1}{9}+\frac{1}{25}+\frac{1}{(2 N-1)^2}\right)$