The area of the smaller region enclosed by the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1, $ and the straight line $\frac{x}{4}+\frac{y}{3}=1$ is $a\pi + b $. The value of $a+b $ is : |
-3 6 0 3 |
-3 |
The correct answer is Option (1) → -3 area required = area of quarter ellipse - area of triangle $\frac{πab}{4}-\frac{1}{2}ab$ $=\frac{π(4)(3)}{4}-\frac{1}{2}(4)(3)=aπ+b$ $3π-6=aπ+b$ $a=3,b=-6$ $a+b=-3$ |