If $A=\begin{bmatrix}\cos α&-\sin α\\\sin α&\cos α\end{bmatrix}$ and and $A+ A^T = I$, find the value of $α$. |
$2nπ±\frac{π}{3},n∈Z$ $2nπ±\frac{π}{3},n∈R$ $2nπ±\frac{π}{3},n∈I$ $2nπ±\frac{π}{3},n∈I$ |
$2nπ±\frac{π}{3},n∈Z$ |
$A=\begin{bmatrix}\cos α&-\sin α\\\sin α&\cos α\end{bmatrix}$ $⇒A^T=\begin{bmatrix}\cos α&\sin α\\-\sin α&\cos α\end{bmatrix}$ Now, $A+ A^T = I$ $∴\begin{bmatrix}\cos α&-\sin α\\\sin α&\cos α\end{bmatrix}+\begin{bmatrix}\cos α&\sin α\\-\sin α&\cos α\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ $⇒\begin{bmatrix}2\cos α&0\\0&2\cos α\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ Comparing the corresponding elements of the two matrices, we have $2\cos α=1$ or $\cos α=\frac{1}{2}=\cos =\frac{π}{3}$ $∴α=2nπ±\frac{π}{3},n∈Z$ |