An emf $E= 200 \sin 300t$ volt is applied across an inductor coil having a resistance of 1.0 Ω. If the maximum current is found to be 10 A, then the value of inductance is approximately: |
23 mH 41 mH 67 mH 53 mH |
67 mH |
The correct answer is Option (1) → 67 mH Given: EMF: $E = 200 \sin 300 t \, \text{V}$ Resistance: $R = 1 \, \Omega$ Maximum current: $I_{\max} = 10 \, \text{A}$ Angular frequency: $\omega = 300 \, \text{rad/s}$ For an RL circuit: $I_{\max} = \frac{E_0}{\sqrt{R^2 + (\omega L)^2}}$ Peak EMF: $E_0 = 200 \, \text{V}$ Substitute values: $10 = \frac{200}{\sqrt{1^2 + (300 L)^2}}$ $\sqrt{1 + (300 L)^2} = \frac{200}{10} = 20$ $1 + (300 L)^2 = 400$ $(300 L)^2 = 399 \approx 400$ $300 L \approx 20 \Rightarrow L \approx \frac{20}{300} \approx 0.0667 \, \text{H}$ Answer: Inductance $L \approx 0.067 \, \text{H}$ |