Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

$∫\frac{1}{(x+1)(x+2)}dx=$

Options:

$log(x+1)(x+2)+C;$ Where C is arbitrary constant of integration

$log\frac{x+1}{x+2}+C;$ Where C is arbitrary constant of integration

$log\frac{x+2}{x+1}+C;$Where C is arbitrary constant of integration

$-log(x+1)(x+2)+C;$ Where C is arbitrary constant of integration

Correct Answer:

$log\frac{x+1}{x+2}+C;$ Where C is arbitrary constant of integration

Explanation:

The correct answer is Option (2) → $\log\frac{x+1}{x+2}+C;$ Where C is arbitrary constant of integration

$∫\frac{1}{(x+1)(x+2)}dx=∫\frac{(x+2)-(x+1)}{(x+1)(x+2)}dx$

$=∫\frac{1}{(x+1)}-\frac{1}{(x+2)}dx$

$=\log(x+1)-\log(x+2)+C$

$=\log\left|\frac{(x+1)}{(x+2)}\right|+C$