If $f (x) = ax+b$ and $g(x) = cx + d$, then $f (g(x)) = g( f (x))$ if |
$f (a) = g(c)$ $f (b) = g(x)$ $f (d) = g(b)$ $f (c) = g(a)$ |
$f (d) = g(b)$ |
$f (g(x)) = ag(x)+ b = a(cx + d)+ b = acx + ad +b$ $g( f (x)) = cf (x)+ d = c(ax +b)+ d = acx +bc + d$ $∴ f (g(x)) = g( f (x))$ if $ad + b = bc + d$ i.e. if $f (d) = g(b)$ |