Match List – I with List – II.
Choose the correct answer from the options given below: |
(A)-(III), (B)-(II), (C)-(IV), (D)-(I) (A)-(II), (B)-(IV), (C)-(III), (D)-(I) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) (A)-(II), (B)-(IV), (C)-(I), (D)-(III) |
(A)-(II), (B)-(IV), (C)-(III), (D)-(I) |
The correct answer is Option (2) → (A)-(II), (B)-(IV), (C)-(III), (D)-(I) (A) $y=x^x$ $y'=x^x(1+\log x)=0$ $x=\frac{1}{e}$ stationary point (II) (B) $y=x^x$ as $y'=x^x(1+\log x)=0$ $⇒x=\frac{1}{e}$ So $\frac{1}{e}$ point of minima $y_{min}=(\frac{1}{e})^{\frac{1}{e}}=e^{\frac{-1}{e}}$ (IV) (C) $y=(\frac{1}{x})^x$ so $y=x^{-x}$ $y'=-x^{-x}(1+\log x)=0$ $⇒x=\frac{1}{e}$ so $\frac{1}{e}$ point of maxima $y_{max}=y(\frac{1}{e})=e^{\frac{1}{e}}$ (III) (D) $y=\frac{\log x}{x}⇒y'=\frac{1}{x^2}-\frac{\log x}{x^2}=0$ $⇒x=e$ stationary point (I) |