A random variable X has the following probability distribution
then value of E(X) is : |
1.66 2.66 3.66 4.66 |
3.66 |
The correct answer is Option (3) → 3.66 The probabilities are given at, $P(X)=0,k,2k,2k,3k,k^2,2k^2,7k^2+k$ The sum of all probabilities must be equal to 1. $⇒0+k+2k+2k+3k+k^2+2k^2+7k^2+k$ $⇒10k^2+9k=1$ $⇒10k^2+9k-1=0$ $⇒10k^2+10k-k-1=0$ $⇒10k(k+1)-(k+1)=0$ $⇒(k+1)(10k-1)=0$ $⇒k=\frac{1}{10}$ [always positive] $=0.1$ $∴E(X)=∑X.P(X)$ $=(0.0)+(1×0.1)+(2×0.2)+(4×0.3)+(5×0.01)+(6×2×0.01)+[7(7×0.01+0.1)]$ $=3.66$ |