Let A be an orthogonal square matrix. Statement-1: $A^{-1}$ is an orthogonal matrix. Statement-2: $(A^{-1})=(A^T)^{-1}$ and $(AB)^{-1}=B^{-1} A^{-1}$ |
Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. |
Clearly, statement-2 is true. Since A is an orthogonal matrix. $∴AA^T = A^TA =I$ $⇒(AA^T)^{-1}=(A^TA)^{-1} = I$ $⇒(A^T) A^{-1}=A^{-1} (A^T)^{-1}$ $[∵ (AB)^{-1} = B^{-1} A^{-1}]$ $⇒(A^{-1})^T A^{-1}=A^{-1} (A^{-1})^T$ $[∵ (A^T)^{-1}=(A^{-1})^T]$ $⇒A^{-1}$ is orthogonal. |