$\int\tan^{-1}\sqrt{x} dx$ equals to: (Here C is an arbitrary constant) |
$(x+1)\tan^{-1}\sqrt{x}-\sqrt{x}+C$ $x\tan^{-1}\sqrt{x}-\sqrt{x}+C$ $\sqrt{x}-x\tan^{-1}\sqrt{x}+C$ $\sqrt{x}-(x+1)\tan^{-1}\sqrt{x}+C$ |
$(x+1)\tan^{-1}\sqrt{x}-\sqrt{x}+C$ |
The correct answer is Option (1) → $(x+1)\tan^{-1}\sqrt{x}-\sqrt{x}+C$ Evaluate: $\int \tan^{-1}(\sqrt{x}) \, dx$ Substitute: $t = \sqrt{x} = x^{1/2}$, so $x = t^2$ and $dx = 2t \, dt$ The integral becomes: $\int \tan^{-1}(\sqrt{x}) \, dx = \int \tan^{-1}(t) \cdot 2t \, dt = 2 \int t \tan^{-1}(t) \, dt$ Use integration by parts: Let: $u = \tan^{-1}(t)$ $du = \frac{1}{1 + t^2} dt$ $dv = t \, dt$ $v = \frac{t^2}{2}$ Then, $2 \int t \tan^{-1}(t) \, dt = 2 \left( u v - \int v \, du \right) = 2 \left( \frac{t^2}{2} \tan^{-1}(t) - \int \frac{t^2}{2} \cdot \frac{1}{1 + t^2} dt \right)$ $= t^2 \tan^{-1}(t) - \int \frac{t^2}{1 + t^2} dt$ Simplify the integral: $\int \frac{t^2}{1 + t^2} dt = \int \left(1 - \frac{1}{1 + t^2}\right) dt = \int 1 \, dt - \int \frac{1}{1 + t^2} dt = t - \tan^{-1}(t) + C$ Therefore, the original integral is: $t^2 \tan^{-1}(t) - (t - \tan^{-1}(t)) + C = t^2 \tan^{-1}(t) - t + \tan^{-1}(t) + C$ Substitute back $t = \sqrt{x}$: ${\int \tan^{-1}(\sqrt{x}) \, dx = x \tan^{-1}(\sqrt{x}) - \sqrt{x} + \tan^{-1}(\sqrt{x}) + C}$ |