The integrating factor of differential equation $[y(1-x\, tan x)+x^2cos x)dx-xdy =0 $ is : |
x cos x logx cos x $\frac{1}{x\, cos \, x}$ $e^{xcos\, x}$ |
$\frac{1}{x\, cos \, x}$ |
The correct answer is Option (3) → $\frac{1}{x\cos x}$ $y(1-x\tan x)+x^2\cos x)dx=xdy$ so $\frac{dy}{dx}=y(\frac{1}{x}-\tan x)+x\cos x$ so $\frac{dy}{dx}+(\tan x-\frac{1}{x})=x\cos x$ I.F. $e^{∫\tan x-\frac{1}{x}dx}$ $=e^{\log\sec x-\log x}$ $=\frac{1}{x\cos x}$ |