If $x=t^3,y=t^2$ then $\frac{d^2y}{dx^2}$ is equal to: |
$\frac{-1}{t^2}$ $\frac{1}{2t^3}$ $\frac{-1}{t^3}$ $\frac{-2}{9t^4}$ |
$\frac{-2}{9t^4}$ |
The correct answer is Option (4) → $\frac{-2}{9t^4}$ Given parametric equations: $x=t^3$, $y=t^2$ $\frac{dy}{dt}=2t$, $\frac{dx}{dt}=3t^2$ $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2t}{3t^2}=\frac{2}{3t}$ Now, $\frac{d^2y}{dx^2}=\frac{d}{dt}\left(\frac{dy}{dx}\right)\cdot \frac{1}{\frac{dx}{dt}}$ $\frac{d}{dt}\left(\frac{2}{3t}\right)=\frac{d}{dt}\left(\frac{2}{3}t^{-1}\right)=-\frac{2}{3}t^{-2}$ So, $\frac{d^2y}{dx^2}=\frac{-\frac{2}{3t^2}}{3t^2}=-\frac{2}{9t^4}$ Final Answer: $\frac{d^2y}{dx^2}=-\frac{2}{9t^4}$ |