If $A=\begin{bmatrix} 3 & 1 \\2 & -3 \end{bmatrix} $ be such that $A^{-1}= KA $, then the value of K is : |
11 -11 $\frac{1}{11}$ $-\frac{1}{11}$ |
$\frac{1}{11}$ |
The correct answer is Option (3) → $\frac{1}{11}$ $A=\begin{bmatrix} 3 & 1 \\2 & -3 \end{bmatrix}$ $A^2=\begin{bmatrix} 3 & 1 \\2 & -3 \end{bmatrix}\begin{bmatrix} 3 & 1 \\2 & -3 \end{bmatrix}=\begin{bmatrix} 11 & 0 \\0& 11 \end{bmatrix}$ We know that $A^{-1}=KA$ So $A^{-1}A=KAA$ $⇒I=KA^2$ So $\begin{bmatrix} 1 & 0 \\0& 1 \end{bmatrix}=K\begin{bmatrix} 11 & 0 \\0& 11 \end{bmatrix}$ $⇒K=\frac{1}{11}$ |