Derivative of $x^x$ with respect to $x\log x$ is |
$x$ $x \log x$ $x^x$ $\log x$ |
$x^x$ |
The correct answer is Option (3) → $x^x$ Let $y = x^x$ Take natural logarithm: $\ln y = x \ln x$ Differentiate both sides w.r.t $x \ln x$: $\frac{d(\ln y)}{d(x \ln x)} = \frac{d(\ln y)/dx}{d(x \ln x)/dx} = \frac{\frac{1}{y} \frac{dy}{dx}}{\ln x + 1}$ Also, $\frac{dy}{dx} = x^x (\ln x + 1)$ So, $\frac{dy}{d(x \ln x)} = \frac{x^x (\ln x + 1)}{\ln x + 1} = x^x$ |