A photon has a momentum of $3.3 × 10^{-29}\, kg\, m/s$. The frequency of the waves associated with the photon will be (Given: $h= 6.6 × 10^{-34} Js$) |
$3 × 10^3\, Hz$ $6 × 10^3\, Hz$ $7.5 × 10^{12}\, Hz$ $1.5 × 10^{13}\, Hz$ |
$1.5 × 10^{13}\, Hz$ |
The correct answer is Option (4) → $1.5 × 10^{13}\, Hz$ Given: Photon momentum $p = 3.3 \times 10^{-29}\,\text{kg·m/s}$ For a photon, $p = \frac{h}{\lambda} \Rightarrow \lambda = \frac{h}{p}$ Planck's constant: $h = 6.626 \times 10^{-34}\,\text{J·s}$ Wavelength: $\lambda = \frac{6.626 \times 10^{-34}}{3.3 \times 10^{-29}} \approx 2.008 \times 10^{-5}\,\text{m}$ Frequency: $f = \frac{c}{\lambda}$, $c = 3 \times 10^8\,\text{m/s}$ $f = \frac{3 \times 10^8}{2.008 \times 10^{-5}} \approx 1.49 \times 10^{13}\,\text{Hz}$ Answer: $f \approx 1.49 \times 10^{13}\,\text{Hz}$ |