Two resistances are connected in two gaps of a metre bridge. The balance point is 20 cm from the zero end. A resistance of $15 \Omega$ is connected in series with the smaller resistance, then the null point shifts to 40 cm. The value of the smaller resistance is: |
$3 \Omega$ $6 \Omega$ $9 \Omega$ $12 \Omega$ |
$9 \Omega$ |
The correct answer is Option (3) → $9 \Omega$ Given, Initial balance at $l_1=20cm$ ($R_1$ is connected) After connecting 40 Ω resistance, balance shifts to $l_2=40 cm$ let, $R_1$ be the smaller resistance $R_2$ be the larger resistance in second gap $∴\frac{R_1}{R_2}=\frac{l}{100-l}$ $⇒\frac{R_1}{R_2}=\frac{20}{100-20}⇒R_1=\frac{R_2}{4}$ Now, when a 15Ω resistor is connected in series - $R_1'=R_1+15$ $∴\frac{R_1'}{R_2}=\frac{40}{100-40}=\frac{2}{3}$ $∴\frac{R_1+15}{R_2}=\frac{2}{3}$ $⇒\frac{R_2+60}{4R_2}=\frac{2}{3}$ $⇒R_2=36Ω$ $∴R_1=\frac{R_2}{4}=\frac{36}{4}$ $R_1=9Ω$ |