Light with an energy flux of $18\, W/cm^2$, falls at normal incidence on a non-reflecting surface with area of $20\, cm^2$. If the light falls for 30 minutes on the surface, find the total momentum delivered to the surface. |
$10^{-3}\, Kg\, ms^{-1}$ $2.16\, Kg\, ms^{-1}$ $4.32 × 10^{-3}\, Kg\, ms^{-1}$ $2.16 × 10^{-3}\, Kg\, ms^{-1}$ |
$2.16 × 10^{-3}\, Kg\, ms^{-1}$ |
The correct answer is Option (4) → $2.16 × 10^{-3}\, Kg\, ms^{-1}$ Energy flux $= 18 \, \text{W/cm}^2 = 18 \times 10^4 \, \text{W/m}^2$ Area $= 20 \, \text{cm}^2 = 20 \times 10^{-4} \, \text{m}^2 = 2 \times 10^{-3} \, \text{m}^2$ Total power incident $P = (18 \times 10^4)(2 \times 10^{-3}) = 360 \, \text{W}$ Time $= 30 \, \text{min} = 1800 \, \text{s}$ Total energy incident $E = P \times t = 360 \times 1800 = 6.48 \times 10^5 \, \text{J}$ For absorption, momentum delivered $p = \frac{E}{c}$ $p = \frac{6.48 \times 10^5}{3 \times 10^8} = 2.16 \times 10^{-3} \, \text{kg·m/s}$ Final Answer: $2.16 \times 10^{-3} \, \text{kg·m/s}$ |