If 95% confidence interval for the population mean was reported to be 140 to 150 and $σ = 25$, then size of the sample used in this study is: [Given: $Z_{0.025}=1.96$] |
120 81 96 112 |
96 |
The correct answer is Option (3) → 96 Given: Confidence interval: 140 to 150 Population standard deviation: σ = 25 95% confidence interval → Z₀.₀₂₅ = 1.96 Confidence interval formula: $\bar{x} \pm Z \frac{\sigma}{\sqrt{n}}$ Margin of error (E) = (150 - 140)/2 = 5 $E = Z \frac{\sigma}{\sqrt{n}}$ $5 = 1.96 \frac{25}{\sqrt{n}}$ $\sqrt{n} = \frac{1.96 × 25}{5}$ $\sqrt{n} = \frac{49}{5} = 9.8$ $n = (9.8)^2 \approx 96.04$ Sample size n ≈ 96 |