The value of the integral $\int \frac{2 x}{\left(x^2+1\right)\left(x^2+2\right)} d x$ is: |
$\log \left|x^2+1\right|+\log \left|x^2+2\right|+C$ $2 \log \left|x^2+1\right|-2 \log \left|x^2+2\right|+C$ $\log \left|\frac{x^2+1}{x^2+2}\right|+C$ $\log \left|\frac{x^2+2}{x^2+1}\right|+C$ |
$\log \left|\frac{x^2+1}{x^2+2}\right|+C$ |
The correct answer is Option (3) → $\log \left|\frac{x^2+1}{x^2+2}\right|+C$ $\int \frac{2 x}{\left(x^2+1\right)\left(x^2+2\right)} d x$ $=\int 2x\frac{((x^2+2)-(x^2+1))}{(x^2+1)(x^2+2)}dx$ $=\int\frac{2x}{x^2+1}-\frac{2x}{x^2+2}dx=\log|x^2+1|-\log|x^2+2|+c$ $=\log \left|\frac{x^2+1}{x^2+2}\right|+C$ |